We consider here a cell-centered finite difference approximation of the Richards equation in three dimensions, averaging for interface values the hydraulic conductivity $K=K(p)$, a highly nonlinear function, by arithmetic, upstream, and harmonic means. The nonlinearities in the equation can lead to changes in soil conductivity over several orders of magnitude and discretizations with respect to space variables often produce stiff systems of differential equations. A fully implicit time discretization is provided by \emph{backward Euler} one-step formula; the resulting nonlinear algebraic system is solved by an inexact Newton Armijo-Goldstein algorithm, requiring the solution of a sequence of linear systems involving Jacobian matrices. We prove some new results concerning the distribution of the Jacobians eigenvalues and the explicit expression of their entries. Moreover, we explore some connections between the saturation of the soil and the ill-conditioning of the Jacobians. The information on eigenvalues justifies the effectiveness of some preconditioner approaches which are widely used in the solution of Richards equation. We also propose a new software framework to experiment with scalable and robust preconditioners suitable for efficient parallel simulations at very large scales. Performance results on a literature test case show that our framework is very promising in the advance towards realistic simulations at extreme scale.
翻译:我们在这里考虑一个以细胞为中心、有限差差差近点的理查斯方程式的三个维度, 平均界面值为液压导量 $K=K(p)$, 一种高度非线性功能, 通过算术、 上游和调和手段。 方程式中的非线性能可能导致土壤传导性的变化, 空间变量在数量和分解的数级上往往产生严格的差异方程系统。 由 emph{ 背向 Euler} 单步公式提供完全隐含的时间分解; 由此产生的非线性代数系统通过不精密的 Newton Armijo- Goldstein 算法解决, 需要解决涉及Jacobian 矩阵的线性系统序列。 我们证明, 方程式中的非线性能可以导致土壤传导力变化, 以及空间变量的清晰表达。 此外, 我们探索了土壤饱和与Jacobian 人之间不相容之间的某些时间分化时间分化关系。 关于egenvalal 方法的有效性, 由Richards 等式模型展示一个非常稳的高级的高级的实验性模型 。