In this paper, we study the inductive biases in convolutional neural networks (CNNs), which are believed to be vital drivers behind CNNs' exceptional performance on vision-like tasks. We first analyze the universality of CNNs, i.e., the ability to approximate continuous functions. We prove that a depth of $\mathcal{O}(\log d)$ is sufficient for achieving universality, where $d$ is the input dimension. This is a significant improvement over existing results that required a depth of $\Omega(d)$. We also prove that learning sparse functions with CNNs needs only $\tilde{\mathcal{O}}(\log^2d)$ samples, indicating that deep CNNs can efficiently capture long-range sparse correlations. Note that all these are achieved through a novel combination of increased network depth and the utilization of multichanneling and downsampling. Lastly, we study the inductive biases of weight sharing and locality through the lens of symmetry. To separate two biases, we introduce locally-connected networks (LCNs), which can be viewed as CNNs without weight sharing. Specifically, we compare the performance of CNNs, LCNs, and fully-connected networks (FCNs) on a simple regression task. We prove that LCNs require ${\Omega}(d)$ samples while CNNs need only $\tilde{\mathcal{O}}(\log^2d)$ samples, which highlights the cruciality of weight sharing. We also prove that FCNs require $\Omega(d^2)$ samples while LCNs need only $\tilde{\mathcal{O}}(d)$ samples, demonstrating the importance of locality. These provable separations quantify the difference between the two biases, and our major observation behind is that weight sharing and locality break different symmetries in the learning process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员