项目名称: 微孔发泡聚合物材料力学行为的研究

项目编号: No.21264004

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 龚维

作者单位: 贵州师范大学

项目金额: 52万元

中文摘要: 项目以化学发泡注塑成型法制备微孔发泡聚合物材料,将数字图像分析理论和形态学特征分析法相结合,分析孔尺寸、孔形态、孔分布在荷载作用下的演化规律;结合可观察变形的形成过程和各个孔的破坏过程,进一步探索孔的失效机理及微缺陷结构对微观力学行为的影响;并进行仿真与模拟,对泡孔尺寸大小及拓扑分布与微孔发泡材料力学性能的变化规律进行预测。根据树脂本征强度和韧性、微孔材料受力时的应力应变场分布特征、以及孔材料受力时的有效承载面积等因素建立物理数学模型,分析和预测本征特性和孔结构对材料力学性能的影响机理。同时通过微孔发泡技术和相容性技术,对增强相表面修饰和熔融树脂中气体扩散行为进行研究,抑制熔体相、增强相、气相三相共存条件下气相沿增强相界面的扩散和偏聚,揭示其气相-熔体相-增强相条件下微孔发泡聚合物材料填充增强增韧机制,为微孔发泡聚合物材料的生产和应用提供指导。

中文关键词: 本征特性;力学行为;界面行为;泡孔结构;失效机理

英文摘要: The microcellular foam polymer materials was made using chemical foam injection method, evolution law of the cell shape, cell diameter and cell distribution were studied in loading by morphological characteristics analysis and theory of digital image analysis, according to deformation process and failure process of cell, effect of mechanical behavior on failure mechanism of cell and micro defect structure was analyzed. We use ANSYS software to set up stress-strain model of cell near by experimental research data, which was forecasted for relevance of cell structure and mechanical properties. Physical and mathematical models was build by the strength and toughness of resin, the effective bearing area and stress strain field distribution characteristics of microcellular materials, effect mechanism of intrinsic properties and cell structure on the mechanical properties of the composites was analyzed using physical and mathematical models. Reinforced by surface modified and gas diffusion behavior of molten resin were studied by microcellular foaming technology and compatibility technology, revealed strengthening and toughening mechanisms of microcellular polymer materials in vapor-melt phase-enhanced phase condition, it provide production and application guide for microcellular polymer materials.

英文关键词: intrinsic characteristic;mechanical behavior;interfacial behavior;failure mechanism;cell structure

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
17+阅读 · 2021年9月21日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
少标签数据学习,61页ppt,宾夕法尼亚大学
专知会员服务
36+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Forecasting Electricity Prices
Arxiv
0+阅读 · 2022年4月25日
Arxiv
0+阅读 · 2022年4月25日
Arxiv
0+阅读 · 2022年4月22日
Arxiv
0+阅读 · 2022年4月22日
小贴士
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
17+阅读 · 2021年9月21日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
少标签数据学习,61页ppt,宾夕法尼亚大学
专知会员服务
36+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员