We study the joint limit behavior of sums, maxima and $\ell^p$-type moduli for samples taken from an $\mathbb{R}^d$-valued regularly varying stationary sequence with infinite variance. As a consequence, we can determine the distributional limits for ratios of sums and maxima, studentized sums, and other self-normalized quantities in terms of hybrid characteristic functions and Laplace transforms. These transforms enable one to calculate moments of the limits and to characterize the differences between the iid and stationary cases in terms of indices which describe effects of extremal clustering on functionals acting on the dependent sequence.
翻译:我们研究了一个$\mathbb{R}^d$-值常变平稳序列的和、最大值和$\ell^p$型模数的联合极限行为,其中这个序列有无限方差。因此,我们可以利用混合特征函数和拉普拉斯变换来确定比率之和与最大值、学生化之和以及其他自正规化量的分布极限。这些变换使我们能够计算极限的矩以及通过描述极值聚类对作用于相关序列的泛函产生影响的指数,来表征iid和平稳案例之间的差异。