We introduce two a posteriori error estimators for N\'ed\'elec finite element discretizations of the curl-curl problem. These estimators pertain to a new Prager-Synge identity and an associated equilibration procedure. They are reliable and efficient, and the error estimates are polynomial-degree-robust. In addition, when the domain is convex, the reliability constants are fully computable. The proposed error estimators are also cheap and easy to implement, as they are computed by solving divergence-constrained minimization problems over edge patches. Numerical examples highlight our key findings, and show that both estimators are suited to drive adaptive refinement algorithms. Besides, these examples seem to indicate that guaranteed upper bounds can be achieved even in non-convex domains.


翻译:我们引入了 N\'ed\'elec 等离子元素对曲线- 曲线问题的后端误差估计值。 这些估计值涉及一个新的 Prager- Synge 身份和相关平衡程序。 它们可靠有效, 误差估计值是多度- 紫外线。 此外, 当域为连接时, 可靠性常数完全可以计算 。 提议的误差估计值也是廉价和容易执行的, 因为它们是通过解决边缘补丁上的差异限制最小化问题来计算的。 数字示例突显了我们的主要发现, 并表明两个估计值都适合驱动适应性精细算法。 此外, 这些示例似乎表明即使在非节点域中, 也能够实现保证的上限 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员