Multiplayer Online Battle Arena (MOBA) is one of the most successful game genres. MOBA games such as League of Legends have competitive environments where players race for their rank. In most MOBA games, a player's rank is determined by the match result (win or lose). It seems natural because of the nature of team play, but in some sense, it is unfair because the players who put a lot of effort lose their rank just in case of loss and some players even get free-ride on teammates' efforts in case of a win. To reduce the side-effects of the team-based ranking system and evaluate a player's performance impartially, we propose a novel embedding model that converts a player's actions into quantitative scores based on the actions' respective contribution to the team's victory. Our model is built using a sequence-based deep learning model with a novel loss function working on the team match. The sequence-based deep learning model process the action sequence from the game start to the end of a player in a team play using a GRU unit that takes a hidden state from the previous step and the current input selectively. The loss function is designed to help the action score to reflect the final score and the success of the team. We showed that our model can evaluate a player's individual performance fairly and analyze the contributions of the player's respective actions.


翻译:多玩者在线战斗竞技场(MOBA)是最成功的游戏类型之一。 象传说联盟这样的MOBA游戏有竞争环境, 球员争得球员的军衔。 在大多数MOBA游戏中, 球员的军衔由比赛结果( 赢或输) 来决定。 球员的军衔似乎很自然, 因为球队游戏的性质, 但从某种意义上说, 这样做不公平, 因为球员们付出了很大努力, 却在输输赢的情况下失去了自己的军衔, 有些球员甚至赢得了队友的努力。 为了减少队级排名系统的副作用, 并且公正地评价球员的表现, 我们提议了一个新型的嵌入模型模式模式, 根据球员对球队胜利的贡献, 将球员的行动转换成数量分数。 我们的模型是用一个基于顺序的深层次学习模型来构建的模型, 从游戏开始到球员队队队队队队队队队队队队队的动作的结束过程。 我们用一个GRU单位从前一步隐藏的状态和当前投入的成绩来评估一个分数, 我们的成绩的分数的分数 。 我们设计一个损失函数, 向一个分数的成绩的分数的分数, 我们的计算, 向一个队队队队队队的成绩的成绩的分。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员