Multiple imputation (MI) is a technique especially designed for handling missing data in public-use datasets. It allows analysts to perform incomplete-data inference straightforwardly by using several already imputed datasets released by the dataset owners. However, the existing MI tests require either a restrictive assumption on the missing-data mechanism, known as equal odds of missing information (EOMI), or an infinite number of imputations. Some of them also require analysts to have access to restrictive or non-standard computer subroutines. Besides, the existing MI testing procedures cover only Wald's tests and likelihood ratio tests but not Rao's score tests, therefore, these MI testing procedures are not general enough. In addition, the MI Wald's tests and MI likelihood ratio tests are not procedurally identical, so analysts need to resort to distinct algorithms for implementation. In this paper, we propose a general MI procedure, called stacked multiple imputation (SMI), for performing Wald's tests, likelihood ratio tests and Rao's score tests by a unified algorithm. SMI requires neither EOMI nor an infinite number of imputations. It is particularly feasible for analysts as they just need to use a complete-data testing device for performing the corresponding incomplete-data test.


翻译:多重估算(MI)是专门设计用于处理公共用途数据集中缺失的数据的技术,它使分析家能够直接使用数据集所有者发布的几个已经估算的数据集进行不完整的数据推断。然而,现有的MI测试要求对缺失的数据机制作出限制性假设,称为失踪信息的同等几率(EOMI),或无限数量的估算。其中一些还要求分析员获得限制性或非标准计算机子路程。此外,现有的MI测试程序仅涵盖Wald的测试和概率比率测试,而不涉及Rao的得分测试,因此,这些MI测试程序不够普遍。此外,MI Wald的测试和MI概率比测试在程序上不完全相同,因此分析员需要采用不同的算法来实施。在本文中,我们建议采用一个通用MI程序,即堆积多的多次估算(SMI),用于进行Wald的测试、概率比率测试和Rao的得分测试。SMI不需要完全的EOMI或无限的不完全的估算率测试,用于进行相应的数据测试。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员