There is a global aging population requiring the need for the right tools that can enable older adults' greater independence and the ability to age at home, as well as assist healthcare workers. It is feasible to achieve this objective by building predictive models that assist healthcare workers in monitoring and analyzing older adults' behavioral, functional, and psychological data. To develop such models, a large amount of multimodal sensor data is typically required. In this paper, we propose MAISON, a scalable cloud-based platform of commercially available smart devices capable of collecting desired multimodal sensor data from older adults and patients living in their own homes. The MAISON platform is novel due to its ability to collect a greater variety of data modalities than the existing platforms, as well as its new features that result in seamless data collection and ease of use for older adults who may not be digitally literate. We demonstrated the feasibility of the MAISON platform with two older adults discharged home from a large rehabilitation center. The results indicate that the MAISON platform was able to collect and store sensor data in a cloud without functional glitches or performance degradation. This paper will also discuss the challenges faced during the development of the platform and data collection in the homes of older adults. MAISON is a novel platform designed to collect multimodal data and facilitate the development of predictive models for detecting key health indicators, including social isolation, depression, and functional decline, and is feasible to use with older adults in the community.


翻译:全球人口老龄化人口需要正确的工具,使老年人能够更加独立,有能力在家里长大,并且能够帮助保健工作者。通过建立预测模型,协助保健工作者监测和分析老年人的行为、功能和心理数据,可以实现这一目标。为了开发这种模型,通常需要大量的多式联运传感器数据。在本文件中,我们建议MAISON,一个可扩展的云基智能装置平台,能够从老年人和住在自己家中的病人那里收集理想的多式联运传感器数据。MAISON平台是新颖的,因为它能够收集比现有平台更多的各种数据模式,以及它的新特点,协助保健工作者监测和分析老年人的行为行为、功能和心理数据。我们展示了MAISON平台的可行性,两个老年人从一个大型康复中心出院出院回家。结果显示,MAISson平台能够从一个云层收集并储存可行的传感器数据,而没有功能缺陷或性退化。这份文件还将讨论在开发一个功能模型和功能模型的过程中所面临的挑战,其中包括为老年健康之家进行无缝合的隔离数据收集的平台和数据采集。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员