Artistic painting has achieved significant progress during recent years by applying hundreds of GAN variants. However, adversarial training has been reported to be notoriously unstable and can lead to mode collapse. Recently, diffusion models have achieved GAN-level sample quality without adversarial training. Using autoencoders to project the original images into compressed latent spaces and cross attention enhanced U-Net as the backbone of diffusion, latent diffusion models have achieved stable and high fertility image generation. In this paper, we focus on enhancing the creative painting ability of current latent diffusion models in two directions, textual condition extension and model retraining with Wikiart dataset. Through textual condition extension, users' input prompts are expanded in temporal and spacial directions for deeper understanding and explaining the prompts. Wikiart dataset contains 80K famous artworks drawn during recent 400 years by more than 1,000 famous artists in rich styles and genres. Through the retraining, we are able to ask these artists to draw novel and creative painting on modern topics.


翻译:近些年来,通过应用数百种GAN变体,艺术绘画取得了显著进步。然而,据报告,对抗性培训臭名昭著地不稳定,可能导致模式崩溃。最近,扩散模型在没有对抗性培训的情况下,实现了GAN级样本质量。利用自动编码器将原始图像投射到压缩的潜层空间,并交叉关注增强U-Net作为传播的支柱,潜在传播模型实现了稳定高生育率的图像生成。在本文中,我们侧重于提高当前潜伏传播模型的创造性绘画能力,分两个方向,即文本状态扩展和用维基艺术数据集进行模型再培训。通过文本条件扩展,用户输入提示在时间和和平方向上得到扩展,以加深理解和解释提示。维基亚数据集包含近400年来由1 000多名富有风格和风格的著名艺术家绘制的80K种著名艺术品。通过再培训,我们可以要求这些艺术家在现代专题上画出新颖和创造性的绘画。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
44+阅读 · 2022年9月6日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员