We model time-varying network data as realizations from multivariate Gaussian distributions with precision matrices that change over time. To facilitate parameter estimation, we require not only that each precision matrix at any given time point be sparse, but also that precision matrices at neighboring time points be similar. We accomplish this with two different algorithms, by generalizing the elastic net and the fused LASSO, respectively. Our main focuses are efficient computational algorithms and convenient degree-of-freedom formulae for choosing tuning parameters. We illustrate our methods with two simulation studies. By applying them to an fMRI data set, we also detect some interesting differences in brain connectivity between healthy individuals and ADHD patients.
翻译:我们用不同时间分布的网络数据作为模型,从多变的高斯分布中实现时间变化,并随时间变化精确矩阵。为了方便参数估计,我们不仅要求任一特定时间点的每个精确矩阵都稀少,而且要求相邻时间点的精确矩阵相似。我们用两种不同的算法来完成这一点,即分别对弹性网和装有引信的LASSO进行概括。我们的主要重点是高效的计算算法和方便的自由度公式,用于选择调试参数。我们用两种模拟研究来说明我们的方法。通过将这种方法应用于FMRI数据集,我们还发现健康个人和ADHD病人在大脑连接方面的一些有趣的差异。