The problem of Bayesian filtering and smoothing in nonlinear models with additive noise is an active area of research. Classical Taylor series as well as more recent sigma-point based methods are two well-known strategies to deal with these problems. However, these methods are inherently sequential and do not in their standard formulation allow for parallelization in the time domain. In this paper, we present a set of parallel formulas that replace the existing sequential ones in order to achieve lower time (span) complexity. Our experimental results done with a graphics processing unit (GPU) illustrate the efficiency of the proposed methods over their sequential counterparts.


翻译:在非线性模型中用添加噪音过滤和滑动贝叶斯式过滤和滑动的问题是一个积极的研究领域,古代泰勒系列以及最近基于西格玛点的方法是处理这些问题的两个众所周知的战略,然而,这些方法本质上是顺序的,在其标准拟订中不允许时间领域的平行化。在本文件中,我们提出一套平行的公式,取代现有的顺序公式,以便实现较低的时间(span)复杂性。我们用一个图形处理单位(GPU)进行的实验结果说明了拟议方法相对于相继处理单位(GPU)的效率。

0
下载
关闭预览

相关内容

泰勒级数的定义 若函数f(x)在点的某一邻域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为: f(x)=f(x0)+f`( x0)(x- x0)+f``( x0)(x-x0)²/2!+f```( x0)(x- x0)³/3!+...fn(x0)(x- x0)n/n!+.... 其中:fn(x0)(x- x0)n/n!,称为拉格朗日余项。 以上函数展开式称为泰勒级数。
专知会员服务
113+阅读 · 2020年10月8日
专知会员服务
42+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
106+阅读 · 2020年1月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
专知会员服务
113+阅读 · 2020年10月8日
专知会员服务
42+阅读 · 2020年7月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
106+阅读 · 2020年1月2日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员