Incomplete multi-view clustering is an important technique to deal with real-world incomplete multi-view data. Previous works assume that all views have the same incompleteness, i.e., balanced incompleteness. However, different views often have distinct incompleteness, i.e., unbalanced incompleteness, which results in strong views (low-incompleteness views) and weak views (high-incompleteness views). The unbalanced incompleteness prevents us from directly using the previous methods for clustering. In this paper, inspired by the effective biological evolution theory, we design the novel scheme of view evolution to cluster strong and weak views. Moreover, we propose an Unbalanced Incomplete Multi-view Clustering method (UIMC), which is the first effective method based on view evolution for unbalanced incomplete multi-view clustering. Compared with previous methods, UIMC has two unique advantages: 1) it proposes weighted multi-view subspace clustering to integrate these unbalanced incomplete views, which effectively solves the unbalanced incomplete multi-view problem; 2) it designs the low-rank and robust representation to recover the data, which diminishes the impact of the incompleteness and noises. Extensive experimental results demonstrate that UIMC improves the clustering performance by up to 40% on three evaluation metrics over other state-of-the-art methods.
翻译:不完整的多观点分组是处理现实世界不完全的多观点数据的重要方法。 先前的工作假设所有观点都具有相同的不完全性, 即平衡的不完全性。 但是,不同观点往往具有明显的不完全性, 即不平衡的不完全性, 导致强烈的观点( 低不完全性观点) 和薄弱的观点( 高度不完全性观点) 。 不平衡的不完全性使我们无法直接使用先前的分组方法。 本文在有效的生物进化理论的启发下, 我们设计了新颖的观点演变方案, 将强弱的观点集中在一起。 此外, 我们提出了一种不平衡的多观点分组法( IMC ), 这是基于不平衡的多观点分组的视觉演进的第一个有效方法。 与以往的方法相比, UIMC 提出了两个独特的优势:(1) 加权的多观点分组, 以整合这些不平衡的不完整的观点, 有效地解决不平衡的多观点问题; 本文设计了低层次和强的代表性, 以恢复数据, 从而减少不完整和噪音的影响。