We introduce a relational semantics based on poset products, and provide sufficient conditions guaranteeing its soundness and completeness for various substructural logics. We also demonstrate that our relational semantics unifies and generalizes two semantics already appearing in the literature: Aguzzoli, Bianchi, and Marra's temporal flow semantics for H\'ajek's basic logic, and Lewis-Smith, Oliva, and Robinson's semantics for intuitionistic Lukasiewicz logic. As a consequence of our general theory, we recover the soundness and completeness results of these prior studies in a uniform fashion, and extend them to infinitely-many other substructural logics.
翻译:我们引入了基于表面产品的关联语义学,并为各种次结构逻辑提供了充分的条件保证其合理性和完整性。 我们还表明,我们的关联语义学统一和概括了文献中已经出现的两种语义学:Aguzzoli、Bianchi和Marra对H\'ajek基本逻辑的时间流语义学,以及Lewis-Smith、Oliva和Robinson对直觉主义Lukasiewicz逻辑的语义学。 由于我们的一般理论,我们以统一的方式恢复了这些先前研究的稳健性和完整性结果,并将它们扩展到无限多其他次结构逻辑。