Neural 3D implicit representations learn priors that are useful for diverse applications, such as single- or multiple-view 3D reconstruction. A major downside of existing approaches while rendering an image is that they require evaluating the network multiple times per camera ray so that the high computational time forms a bottleneck for downstream applications. We address this problem by introducing a novel neural scene representation that we call the directional distance function (DDF). To this end, we learn a signed distance function (SDF) along with our DDF model to represent a class of shapes. Specifically, our DDF is defined on the unit sphere and predicts the distance to the surface along any given direction. Therefore, our DDF allows rendering images with just a single network evaluation per camera ray. Based on our DDF, we present a novel fast algorithm (FIRe) to reconstruct 3D shapes given a posed depth map. We evaluate our proposed method on 3D reconstruction from single-view depth images, where we empirically show that our algorithm reconstructs 3D shapes more accurately and it is more than 15 times faster (per iteration) than competing methods.
翻译:神经 3D 隐含的表达方式学会了对多种应用有用的前缀, 如单视或多视 3D 重建。 在制作图像时, 现有方法的主要下行点是, 它们要求每摄像头射线对网络进行多次评估, 以便高计算时间形成下游应用的瓶颈。 我们通过引入新型神经场景演示来解决这个问题, 我们称之为方向距离函数( DDF ) 。 为此, 我们学习了签名的距离函数( SDF) 以及 DDDF 模型来代表某类形状。 具体地说, 我们的 DDF 是在单位范围上定义的, 并预测到任何特定方向上到地表的距离。 因此, 我们的 DDF 允许以每摄像头射线只进行一次网络评价。 根据我们的 DDF, 我们提出一个新的快速算法( Friste) 来重建 3D 形状, 以显示我们从单视深度图像中重建 3D 的拟议方法, 我们从此算法可以更精确地重塑3D 3D 和速度超过 15 。