Model merging is a new approach to creating a new model by combining the weights of different trained models. Previous studies report that model merging works well for models trained on a single dataset with different random seeds, while model merging between different datasets is difficult. Merging knowledge from different datasets has practical significance, but it has not been well investigated. In this paper, we investigate the properties of merging models between different datasets. Through theoretical and empirical analyses, we find that the accuracy of the merged model decreases more significantly as the datasets diverge more and that the different loss landscapes for each dataset make model merging between different datasets difficult. We also show that merged models require datasets for merging in order to achieve a high accuracy. Furthermore, we show that condensed datasets created by dataset condensation can be used as substitutes for the original datasets when merging models. We conduct experiments for model merging between different datasets. When merging between MNIST and Fashion- MNIST models, the accuracy significantly improves by 28% using the dataset and 25% using the condensed dataset compared with not using the dataset.
翻译:暂无翻译