Building change detection is essential for monitoring urbanization, disaster assessment, urban planning and frequently updating the maps. 3D structure information from airborne light detection and ranging (LiDAR) is very effective for detecting urban changes. But the 3D point cloud from airborne LiDAR(ALS) holds an enormous amount of unordered and irregularly sparse information. Handling such data is tricky and consumes large memory for processing. Most of this information is not necessary when we are looking for a particular type of urban change. In this study, we propose an automatic method that reduces the 3D point clouds into a much smaller representation without losing the necessary information required for detecting Building changes. The method utilizes the Deep Learning(DL) model U-Net for segmenting the buildings from the background. Produced segmentation maps are then processed further for detecting changes and the results are refined using morphological methods. For the change detection task, we used multi-temporal airborne LiDAR data. The data is acquired over Stockholm in the years 2017 and 2019. The changes in buildings are classified into four types: 'newly built', 'demolished', 'taller' and 'shorter'. The detected changes are visualized in one map for better interpretation.
翻译:用于监测城市化、灾害评估、城市规划和经常更新地图的建筑变化检测是监测城市化、灾害评估、城市规划和更新地图的关键。 来自空中光探测和测距(LiDAR)的 3D 结构信息对于检测城市变化非常有效。 但是来自空中的 liDAR (ALS) 的 3D 点云云层拥有大量未经排序和不规则地散布的信息。 处理这些数据十分困难, 并消耗了大量的记忆来处理。 多数这些信息在我们寻找特定类型的城市变化时是不必要的。 在这项研究中, 我们建议了一种自动的方法, 将3D点云层缩小为更小的表示, 而不会丢失探测建筑变化所需的必要信息 。 该方法使用深层学习(DL) 模型 U- Net 来从背景中分割建筑物。 随后, 生成的分解图被进一步处理以检测变化, 并且使用形态学方法对结果进行改进。 对于变化检测任务, 我们使用了多时空流传LDAR 数据是2017年和2019年在斯德哥尔摩获得的。 建筑物的变化分为四种类型: “ 新建的”, 改进的判读图中的“ ” 检测到” 。