Swarms of autonomous agents are useful in many applications due to their ability to accomplish tasks in a decentralized manner, making them more robust to failures. Due to the difficulty in running experiments with large numbers of hardware agents, researchers often make simplifying assumptions and remove constraints that might be present in a real swarm deployment. While simplifying away some constraints is tolerable, we feel that two in particular have been overlooked: one, that agents in a swarm take up physical space, and two, that agents might be damaged in collisions. Many existing works assume agents have negligible size or pass through each other with no added penalty. It seems possible to ignore these constraints using collision avoidance, but we show using an illustrative example that this is easier said than done. In particular, we show that collision avoidance can interfere with the intended swarming behavior and significant parameter tuning is necessary to ensure the behavior emerges as best as possible while collisions are avoided. We compare four different collision avoidance algorithms, two of which we consider to be the best decentralized collision avoidance algorithms available. Despite putting significant effort into tuning each algorithm to perform at its best, we believe our results show that further research is necessary to develop swarming behaviors that can achieve their goal while avoiding collisions with agents of non-negligible volume.


翻译:自主物剂的摇篮在很多应用中都非常有用,因为它们有能力以分散方式完成任务,使其更强大地应对失败。由于难以对大量硬件物剂进行实验,研究人员往往会做出简化的假设,并消除在真正的暖化部署中可能存在的限制。虽然简化一些限制是可以容忍的,但我们认为,特别忽视了两个因素:一是暖热中的物剂占用了物理空间,二是物剂可能会在碰撞中受损。许多现有工作假设物剂的尺寸微乎其微,或相互通过而没有附加惩罚。似乎有可能以避免碰撞的方式忽略这些限制因素,但我们用一个说明性的例子表明,说这样做比做起来容易。特别是,我们表明避免碰撞可以干扰预期的升温行为,而重要的参数调整是必要的,以确保在避免碰撞的同时尽可能地出现行为。我们比较了四种不同的避免碰撞的算法,其中两种算法我们认为是最好的分散地避免碰撞的算法。尽管为最佳地调整每种算法,但我们认为作出相当大的努力,但我们认为我们用一个示例表明,说这样做比做得容易得多。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年4月26日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员