The Particle Swarm Optimisation (PSO) algorithm has undergone countless modifications and adaptations since its original formulation in 1995. Some of these have become mainstream whereas many others have not been adopted and faded away. Thus, a myriad of alternative formulations have been proposed to the extent that the question arises as to what the basic features of an algorithm must be to belong in the PSO family. The aim of this paper is to establish what defines a PSO algorithm and to attempt to formulate it in such a way that it encompasses many existing variants. Therefore, different versions of the method may be posed as settings within the proposed unified framework. In addition, the proposed formulation generalises, decouples and incorporates features to the method providing more flexibility to the behaviour of each particle. The closed forms of the trajectory difference equation are obtained, different types of behaviour are identified, stochasticity is decoupled, and traditionally global features such as sociometries and constraint-handling are re-defined as particle's attributes.


翻译:自1995年最初拟订以来,Particle Swarm优化(PSO)算法经历了无数的修改和调整,自1995年最初拟订以来,这些算法经历了无数次的修改和调整,其中一些已经成为主流,而其他许多算法尚未被采纳和淡化,因此,提出了各种各样的替代配方,以致产生这样一个问题:一种算法的基本特征必须属于PSO家庭。本文件的目的是确定PSO算法的定义,并试图以包含许多现有变式的方式加以拟订。因此,在拟议的统一框架内,该方法的不同版本可以作为设置形式出现。此外,拟议的配方法的概括性、分离性以及将一些特征纳入为每个粒子行为提供更大灵活性的方法中。获得的轨道差异方程式的封闭形式、不同的行为类型、分解式的分解,以及传统的全球特征,如社会定性和约束性处理,被重新界定为粒子属性。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
雪球
6+阅读 · 2018年8月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月13日
Arxiv
0+阅读 · 2021年1月24日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
雪球
6+阅读 · 2018年8月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员