In this work, we focus on the high-dimensional trace regression model with a low-rank coefficient matrix. We establish a nearly optimal in-sample prediction risk bound for the rank-constrained least-squares estimator under no assumptions on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. Finally, we use alternating minimization to approximately solve the rank-constrained least-squares problem to evaluate its empirical in-sample prediction risk and power of the resulting permutation test in our numerical study.
翻译:在这项工作中,我们侧重于具有低位系数矩阵的高维微量回归模型。我们为在设计矩阵上没有假设的情况下受排位限制的最小方位估计器设定了近乎最佳的全方位预测风险。证据的核心是覆盖与设计所跨越的子空间相对应的投影操作员家属的覆盖数字。通过利用这一复杂结果,我们对高位微量回归模型下存在一个低位信号进行变换测试。最后,我们利用交替最小化来大致解决受排位限制的最小方位问题,以评价其实证的模拟预测风险和我们数字研究中由此产生的变异测试的力量。