Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field, however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that the placement of infrastructure LiDAR can heavily affect the accuracy of perception. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance.
翻译:最近,车辆对一切(V2X)的合作观念引起了越来越多的关注。基础设施传感器在这一研究领域发挥着关键作用,然而,如何找到基础设施传感器的最佳位置却很少研究。在本文件中,我们调查基础设施传感器安置问题并提出管道,以便在现实的模拟环境中为基础设施传感器找到最佳安装位置;为了更好地模拟和评估LIDAR定位,我们建立了一个现实的LIDAR模拟图书馆,可以模拟不同受欢迎的LIDAR的独特性,并在CARLA模拟器中生成高不洁的LIDAR点云。通过在不同的LIDAR定位中模拟点云数据,我们可以使用多个探测模型来评估这些位置的准确性。然后,我们通过计算有关区域的密度和统一性,分析点云分布与感知准确性之间的相互关系。实验表明,基础设施LIDAR定位可以严重影响感知的准确性。我们还分析了在利益区域和LIDAR点云分布的感知性与确认密度和一致性可以是性指标。