Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.
翻译:面部合成攻击已成为潜在威胁,特别是在自动边境管制场景中。合成攻击允许多个个人使用可用于使用自动边境管制门穿越边境的旅行文件。合成攻击的潜在风险取决于数据主题的选择(帮凶和恶意行为者)。本项工作调查外貌相似和同卵双生子作为面部合成生成的来源的漏洞。我们对基准测试面部识别系统(FRS)对外观相似和同卵双生子合成图像的漏洞性进行了系统研究。因此,我们使用16对相同的双生子和长相相似的数据主题构建了新的面部合成数据库。使用基于地标的方法生成来自外貌相似和同卵双生子的合成图像。进行了广泛的实验证明外貌相似和同卵双生子的攻击潜力。此外,设计实验以深入了解与正常面部合成相比,外貌相似和同卵双生子面部合成的漏洞性影响。