Existing studies in weakly supervised semantic segmentation (WSSS) have utilized class activation maps (CAMs) to localize the class objects. However, since a classification loss is insufficient for providing precise object regions, CAMs tend to be biased towards discriminative patterns (i.e., sparseness) and do not provide precise object boundary information (i.e., impreciseness). To resolve these limitations, we propose a novel framework (composed of MainNet and SupportNet.) that derives pixel-level self-supervision from given image-level supervision. In our framework, with the help of the proposed Regional Contrastive Module (RCM) and Multi-scale Attentive Module (MAM), MainNet is trained by self-supervision from the SupportNet. The RCM extracts two forms of self-supervision from SupportNet: (1) class region masks generated from the CAMs and (2) class-wise prototypes obtained from the features according to the class region masks. Then, every pixel-wise feature of the MainNet is trained by the prototype in a contrastive manner, sharpening the resulting CAMs. The MAM utilizes CAMs inferred at multiple scales from the SupportNet as self-supervision to guide the MainNet. Based on the dissimilarity between the multi-scale CAMs from MainNet and SupportNet, CAMs from the MainNet are trained to expand to the less-discriminative regions. The proposed method shows state-of-the-art WSSS performance both on the train and validation sets on the PASCAL VOC 2012 dataset. For reproducibility, code will be available publicly soon.


翻译:由于分类损失不足以提供精确的物体区域,因此主要网络往往偏向于歧视模式(即稀少),不提供精确的物体边界信息(即不准确性)。为解决这些限制,我们提议了一个新的框架(由主网和支助网组成),从特定图像级别监督中产生象素级自我监督功能。在我们框架内,在拟议的区域竞争模块(RCM)和多尺度加速模块(MAM)的帮助下,主网络往往受到支持网络自我监督的培训。 支持网络从支持网络提取了两种自我监督形式:(1) CAMs生成的类区域掩码,以及(2) 从级区域掩码中获取的等级原型。然后,主网络的每个像素级自我监督功能都由比较性模型进行快速培训,从而将CAM模式和多级加速模块的CASALSAL支持升级为CASUD 系统。MAM将使用CASAL SALSASAL 系统模拟的CASALSUD SAL-SAL SAL SALS 系统, 将CASAL-SALMs Airal-SALM Supal-Sildal-Sildal-Sildal-Sildal-Sild Supal-Sild Supal-Sildal ASal ASyal ASal 将使用CAMS ASyal-SAL ASY SAL ASY SALM SALM SALM SALM SALM SALM SALM SALM SALM SALM SALMs 将使用CM SALMs 。M SALMs 。Ms 将使用CM Sal-SALM SALM SALM SALM SALM SALMs 将使用由CM SALM SALM SALM 系统的M 将使用由CM SAL-SAL SAL SAL SALM SAL-SAL-SALM 系统的多级系统的模型的模型在多级的模型进行上,将使用。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年8月20日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
相关资讯
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员