Generating natural and physically feasible motions for legged robots has been a challenging problem due to its complex dynamics. In this work, we introduce a novel learning-based framework of autoregressive motion planner (ARMP) for quadruped locomotion and navigation. Our method can generate motion plans with an arbitrary length in an autoregressive fashion, unlike most offline trajectory optimization algorithms for a fixed trajectory length. To this end, we first construct the motion library by solving a dense set of trajectory optimization problems for diverse scenarios and parameter settings. Then we learn the motion manifold from the dataset in a supervised learning fashion. We show that the proposed ARMP can generate physically plausible motions for various tasks and situations. We also showcase that our method can be successfully integrated with the recent robot navigation frameworks as a low-level controller and unleash the full capability of legged robots for complex indoor navigation.
翻译:生成自然且具有物理可行性的四足机器人运动一直是一个具有挑战性的问题,因为其具有复杂的动力学特性。在本文中,我们引入了一种新颖的基于学习的自回归运动规划 (ARMP) 框架,用于四足机器人的运动与导航。与大多数固定轨迹长度的线下轨迹优化算法不同,我们的方法可以以自回归的方式生成任意长度的运动路径。为此,我们首先通过解决多样化场景和参数设置的一组密集轨迹优化问题构建运动库。然后,我们在一种监督学习的方式下从数据集中学习运动流形,从而为各种任务和情况生成物理可行的运动计划。我们还展示了我们的方法可以成功地集成到最近的机器人导航框架中作为低层控制器,并释放四足机器人在复杂室内导航中的全部能力。