The development of data-dependent heuristics and representations for biological sequences that reflect their evolutionary distance is critical for large-scale biological research. However, popular machine learning approaches, based on continuous Euclidean spaces, have struggled with the discrete combinatorial formulation of the edit distance that models evolution and the hierarchical relationship that characterises real-world datasets. We present Neural Distance Embeddings (NeuroSEED), a general framework to embed sequences in geometric vector spaces, and illustrate the effectiveness of the hyperbolic space that captures the hierarchical structure and provides an average 22% reduction in embedding RMSE against the best competing geometry. The capacity of the framework and the significance of these improvements are then demonstrated devising supervised and unsupervised NeuroSEED approaches to multiple core tasks in bioinformatics. Benchmarked with common baselines, the proposed approaches display significant accuracy and/or runtime improvements on real-world datasets. As an example for hierarchical clustering, the proposed pretrained and from-scratch methods match the quality of competing baselines with 30x and 15x runtime reduction, respectively.
翻译:开发反映进化距离的以数据为依存的理论和生物序列图象,对于大规模生物研究至关重要。然而,基于连续的欧几里德空间,流行的机器学习方法与模型演化的编辑距离和描述真实世界数据集的分级关系的分化组合式配制相挣扎。我们介绍了神经远程嵌入(NeuroSEED),这是将序列嵌入几何矢量空间的一般框架,并说明了超单空间的有效性,该空间捕捉了等级结构,并平均减少了22%的RMSE嵌入与最佳竞合几何方法的比重。框架的能力和这些改进的意义随后展示了如何设计出受监督和不受监督的NeurOSED处理生物信息学中多重核心任务的方法。与共同基线相比,拟议方法在实际世界数据集上显示出显著的准确性和/或运行时间改进。作为分级组合的一个实例,拟议的预先培训和抽取方法与竞争基线的质量分别与30x和15x运行时缩减相匹配。