Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic segmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Self-Supervised Selective Self-Training (S4T), a source-free adaptation algorithm that first uses the model's pixel-level predictive consistency across diverse views of each target image along with model confidence to classify pixel predictions as either reliable or unreliable. Next, the model is self-trained, using predicted pseudolabels for reliable predictions and pseudolabels inferred via a selective interpolation strategy for unreliable ones. S4T matches or improves upon the state-of-the-art in source-free adaptation on 3 standard benchmarks for semantic segmentation within a single epoch of adaptation.
翻译:在适应过程中,大多数适应性语义分离的现代方法都依赖于持续访问源数据,而由于计算或隐私限制,这些数据可能不可行。我们注重于无源域对语义分离的适应,其中源模型必须适应新的目标领域,仅给未贴标签的目标数据。我们提议自我监督选择性自我培训(S4T),一种无源适应算法,首先使用模型对每个目标图像的不同观点的像素水平预测一致性,同时使用模型信心,将像素预测分类为可靠或不可靠。接下来,该模型是自我培训的,使用预测的假标签进行可靠的预测,并通过不可靠指标的选择性内插战略推断假标签。S4T匹配或改进了在单一适应区内的语义分离的3个标准基准,即无源适应状态。