Recent weakly-supervised semantic segmentation (WSSS) has made remarkable progress due to class-wise localization techniques using image-level labels. Meanwhile, weakly-supervised instance segmentation (WSIS) is a more challenging task because instance-wise localization using only image-level labels is quite difficult. Consequently, most WSIS approaches exploit off-the-shelf proposal technique that requires pre-training with high-level labels, deviating a fully image-level supervised setting. Moreover, we focus on semantic drift problem, $i.e.,$ missing instances in pseudo instance labels are categorized as background class, occurring confusion between background and instance in training. To this end, we propose a novel approach that consists of two innovative components. First, we design a semantic knowledge transfer to obtain pseudo instance labels by transferring the knowledge of WSSS to WSIS while eliminating the need for off-the-shelf proposals. Second, we propose a self-refinement method that refines the pseudo instance labels in a self-supervised scheme and employs them to the training in an online manner while resolving the semantic drift problem. The extensive experiments demonstrate the effectiveness of our approach, and we outperform existing works on PASCAL VOC2012 without any off-the-shelf proposal techniques. Furthermore, our approach can be easily applied to the point-supervised setting, boosting the performance with an economical annotation cost. The code will be available soon.


翻译:由于使用图像级标签的等级化技术(WSSS),最近监督不力的语义分割(WSSS)取得了显著进展。 同时,由于使用图像级标签的等级化技术(SSS)的等级化技术(SSS)的等级化技术(SSS)的等级化技术(SSS)的等级化技术(SSS)的等级化技术(SSSS)的等级化技术(SSSS)的等级化技术(SWSS)的等级化技术(SWSS)的等级化技术(SWSS)的等级化技术(SWSS)的等级化技术(SWSS)的等级化技术(SISIS)的等级化技术(SWIS)的等级化技术(SWS)的等级化技术(SIS)相当困难。此外,我们建议了一种简单化的方法,在自我校准的系统化的系统化方法中, 将用在自我校准的系统化的系统化方法中改进伪化的符号标签, 并把它们用于在线化的升级,同时解决系统化的系统化的流程流转问题。

0
下载
关闭预览

相关内容

【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2021年6月1日
VIP会员
相关VIP内容
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
相关资讯
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员