Pretrained bidirectional Transformers, such as BERT, have achieved significant improvements in a wide variety of language understanding tasks, while it is not straightforward to directly apply them for natural language generation. In this paper, we present a sequence-to-sequence fine-tuning toolkit s2s-ft, which adopts pretrained Transformers for conditional generation tasks. Inspired by UniLM, we implement three sequence-to-sequence fine-tuning algorithms, namely, causal fine-tuning, masked fine-tuning, and pseudo-masked fine-tuning. By leveraging the existing pretrained bidirectional Transformers, experimental results show that s2s-ft achieves strong performance on several benchmarks of abstractive summarization, and question generation. Moreover, we demonstrate that the package s2s-ft supports both monolingual and multilingual NLG tasks. The s2s-ft toolkit is available at https://github.com/microsoft/unilm/tree/master/s2s-ft.


翻译:在UniLM的启发下,我们实施了三种从顺序到顺序的微调算法,即因果微调、蒙面微调和假冒的微调。通过利用现有的经过预先训练的双向变换器,实验结果显示S2-ft在抽象组合和问题生成的若干基准上取得了很强的业绩。此外,我们证明S2-ft包支持单语和多语言NLG任务。S2-ft工具包可在https://github.com/microsoft/unilm/tree/master/s2s-ft上查阅。

0
下载
关闭预览

相关内容

预训练语言模型fine-tuning近期进展概述
专知会员服务
40+阅读 · 2021年4月9日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
41+阅读 · 2020年3月21日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
pytorch中文语言模型bert预训练代码
AINLP
3+阅读 · 2020年7月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
6+阅读 · 2019年3月19日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
pytorch中文语言模型bert预训练代码
AINLP
3+阅读 · 2020年7月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员