The Walsh--Hadamard spectrum of a bent function uniquely determines a dual function. The dual of a bent function is also bent. A bent function that is equal to its dual is called a self-dual function. The Hamming distance between a bent function and its dual is related to its Rayleigh quotient. Carlet, Danielsen, Parker, and Sole studied Rayleigh quotients of bent functions in ${\mathcal PS}_{ap}$, and obtained an expression in terms of a character sum. We use another approach comprising of Desarguesian spreads to obtain the complete spectrum of Rayleigh quotients of bent functions in $\mathcal{PS}_{ap}$.
翻译:华尔什-哈达玛函数的谱可以唯一确定其对偶函数。 所有的对偶布尔函数都是贝特曼函数,但并不是所有的贝特曼函数都是对偶函数。 一个与它的对偶函数相等的贝特曼函数被称为自对偶函数。 贝特曼函数与其对偶函数之间的汉明距离与它的瑞利商相关。 Carlet,Danielsen,Parker和Sole研究了 $\mathcal{PS}_{ap}$ 中的贝特曼函数的瑞利商,并用字符和的形式得到了瑞利商的表达式。 我们使用套房描述法另一种方法来获取$\mathcal{PS}_{ap}$中的贝特曼函数的完整瑞利商谱。