Currently, state-of-the-art exploration methods maintain high-resolution map representations in order to optimize exploration goals in each step that maximizes information gain. However, during exploring, those "optimal" selections could quickly become obsolete due to the influx of new information, especially in large-scale environments, and result in high-frequency re-planning that hinders the overall exploration efficiency. In this paper, we propose a graph-based topological planning framework, building a sparse topological map in three-dimensional (3D) space to guide exploration steps with high-level intents so as to render consistent exploration maneuvers. Specifically, this work presents a novel method to estimate 3D space's geometry with convex polyhedrons. Then, the geometry information is utilized to group space into distinctive regions. And those regions are added as nodes into the topological map, directing the exploration process. We compared our method with the state-of-the-art in simulated environments. The proposed method achieves higher space coverage and outperforms exploration efficiency by more than 40% during experiments. Finally, a field experiment was conducted to further evaluate the applicability of our method to empower efficient and robust exploration in real-world environments.


翻译:目前,最先进的勘探方法保持高分辨率地图显示方式,以优化每个步骤的勘探目标,从而最大限度地增加信息收益。然而,在探索过程中,由于新信息流入,特别是在大规模环境中,这些“最佳”选择可能很快过时,导致高频再规划,从而妨碍总体勘探效率。在本文件中,我们提出了一个基于图表的地形规划框架,在三维(3D)空间绘制一个稀有的地形图,以指导具有高层次意图的勘探步骤,从而形成一致的勘探策略。具体地说,这项工作提出了一种新颖的方法,用以估计3D空间与等离子体的几何学。然后,这些几何学信息被用于将空间分组到不同的区域。这些区域作为节点被添加到地形图中,指导勘探进程。我们比较了我们的方法与模拟环境中的最新技术。拟议方法实现了更高的空间覆盖面,在实验期间超过40%的探索效率。最后,进行了实地实验,以进一步评估我们的方法在现实环境中增强有效和能力的探索能力的可行性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
50+阅读 · 2020年8月25日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员