Regrasping a suture needle is an important yet time-consuming process in suturing. To bring efficiency into regrasping, prior work either designs a task-specific mechanism or guides the gripper toward some specific pick-up point for proper grasping of a needle. Yet, these methods are usually not deployable when the working space is changed. Therefore, in this work, we present rapid trajectory generation for bimanual needle regrasping via reinforcement learning (RL). Demonstrations from a sampling-based motion planning algorithm is incorporated to speed up the learning. In addition, we propose the ego-centric state and action spaces for this bimanual planning problem, where the reference frames are on the end-effectors instead of some fixed frame. Thus, the learned policy can be directly applied to any feasible robot configuration. Our experiments in simulation show that the success rate of a single pass is 97%, and the planning time is 0.0212s on average, which outperforms other widely used motion planning algorithms. For the real-world experiments, the success rate is 73.3% if the needle pose is reconstructed from an RGB image, with a planning time of 0.0846s and a run time of 5.1454s. If the needle pose is known beforehand, the success rate becomes 90.5%, with a planning time of 0.0807s and a run time of 2.8801s.
翻译:调试缝合针是一个重要而又耗时的过程。 要将效率引入重裁, 先前的工作要么设计一个任务特定机制, 要么将抓针引导到某个特定的抓取点, 以便正确掌握针头。 然而, 这些方法通常无法在工作空间改变时被部署。 因此, 在这项工作中, 我们展示的是通过强化学习( RL ) 来双体针重新裁剪的快速轨迹生成过程。 采样运动规划算法的演示被整合到一个基于抽样的运动规划算法中, 以加快学习速度。 此外, 我们提议为这一双体计划问题设计一个以自我为中心的状态和行动空间, 其中参考框架位于最终效果器而不是某些固定框架上。 因此, 所学过的政策可以直接应用于任何可行的机器人配置 。 我们的模拟实验显示, 单口针的成功率是97 %, 平均规划时间是 0.0212, 这比其他广泛使用的动作规划算法要快。 对于现实世界的实验来说, 成功率是73. 3%, 如果针摆是用RGB 5- 正在规划一个508 的时速率, 。