Object detectors, which are widely deployed in security-critical systems such as autonomous vehicles, have been found vulnerable to patch hiding attacks. An attacker can use a single physically-realizable adversarial patch to make the object detector miss the detection of victim objects and undermine the functionality of object detection applications. In this paper, we propose ObjectSeeker for certifiably robust object detection against patch hiding attacks. The key insight in ObjectSeeker is patch-agnostic masking: we aim to mask out the entire adversarial patch without knowing the shape, size, and location of the patch. This masking operation neutralizes the adversarial effect and allows any vanilla object detector to safely detect objects on the masked images. Remarkably, we can evaluate ObjectSeeker's robustness in a certifiable manner: we develop a certification procedure to formally determine if ObjectSeeker can detect certain objects against any white-box adaptive attack within the threat model, achieving certifiable robustness. Our experiments demonstrate a significant (~10%-40% absolute and ~2-6x relative) improvement in certifiable robustness over the prior work, as well as high clean performance (~1% drop compared with undefended models).
翻译:在诸如自主车辆等安全关键系统中广泛部署的物体探测器,被发现容易被隐藏攻击。攻击者可以使用单一的物理可实现的对称网格,使物体探测器无法探测受害者物体,并破坏物体探测应用程序的功能。在本文件中,我们建议“物体搜索者”对隐藏攻击进行可靠的物体探测。“物体搜索者”的关键洞察力是补丁-不可知的遮罩:我们的目标是掩盖整个对称补丁,而不知道补丁的形状、大小和位置。这种遮罩操作可以消除对抗性效应,使任何香草对象探测器能够安全地探测遮蔽图像上的物体。值得注意的是,我们可以以可验证的方式评估“物体搜索者”的坚固性:我们开发一个认证程序,正式确定“物体搜索者”能否在威胁模型内探测到某些白色箱适应性攻击的物体,从而实现可验证的坚固性。我们的实验表明,在前工作上(~10%-40%的绝对性和~6x相对性),使任何香草物体探测器能够安全地探测到被遮蔽的图像上的物体。显然,我们开发了一个高性模型。