Adversarial attacks in the input (pixel) space typically incorporate noise margins such as $L_1$ or $L_{\infty}$-norm to produce imperceptibly perturbed data that confound deep learning networks. Such noise margins confine the magnitude of permissible noise. In this work, we propose injecting adversarial perturbations in the latent (feature) space using a generative adversarial network, removing the need for margin-based priors. Experiments on MNIST, CIFAR10, Fashion-MNIST, CIFAR100 and Stanford Dogs datasets support the effectiveness of the proposed method in generating adversarial attacks in the latent space while ensuring a high degree of visual realism with respect to pixel-based adversarial attack methods.


翻译:在输入(像素)空间中的敌对攻击通常会引入噪声边缘,例如 $L_1$ 或 $L_{\infty}$-范数,以产生与深度学习网络相矛盾的微小扰动数据。这些噪声边缘限制了可允许噪声的幅度。在这项工作中,我们提出使用生成对抗网络在显著性(特征)空间中注入对抗性扰动,从而消除了基于边缘的先验条件的需要。在 MNIST,CIFAR10,Fashion-MNIST,CIFAR100 和斯坦福狗数据集上的实验证明了该方法在生成对抗性攻击方面的有效性,同时与基于像素的对抗性攻击方法相比,保证了高度的视觉逼真性。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员