Vehicles in platoons need to process many tasks to support various real-time vehicular applications. When a task arrives at a vehicle, the vehicle may not process the task due to its limited computation resource. In this case, it usually requests to offload the task to other vehicles in the platoon for processing. However, when the computation resources of all the vehicles in the platoon are insufficient, the task cannot be processed in time through offloading to the other vehicles in the platoon. Vehicular fog computing (VFC)-assisted platoon can solve this problem through offloading the task to the VFC which is formed by the vehicles driving near the platoon. Offloading delay is an important performance metric, which is impacted by both the offloading strategy for deciding where the task is offloaded and the number of the allocated vehicles in VFC to process the task. Thus, it is critical to propose an offloading strategy to minimize the offloading delay. In the VFC-assisted platoon system, vehicles usually adopt the IEEE 802.11p distributed coordination function (DCF) mechanism while having various computation resources. Moreover, when vehicles arrive and depart the VFC randomly, their tasks also arrive at and depart the system randomly. In this paper, we propose a semi-Markov decision process (SMDP) based offloading strategy while considering these factors to obtain the maximal long-term reward reflecting the offloading delay. Our research provides a robust strategy for task offloading in VFC systems, its effectiveness is demonstrated through simulation experiments and comparison with benchmark strategies.
翻译:暂无翻译