This work studies Stackelberg network interdiction games -- an important class of games in which a defender first allocates (randomized) defense resources to a set of critical nodes on a graph while an adversary chooses its path to attack these nodes accordingly. We consider a boundedly rational adversary in which the adversary's response model is based on a dynamic form of classic logit-based discrete choice models. We show that the problem of finding an optimal interdiction strategy for the defender in the rational setting is NP-hard. The resulting optimization is in fact non-convex and additionally, involves complex terms that sum over exponentially many paths. We tackle these computational challenges by presenting new efficient approximation algorithms with bounded solution guarantees. First, we address the exponentially-many-path challenge by proposing a polynomial-time dynamic programming-based formulation. We then show that the gradient of the non-convex objective can also be computed in polynomial time, which allows us to use a gradient-based method to solve the problem efficiently. Second, we identify a restricted problem that is convex and hence gradient-based methods find the global optimal solution for this restricted problem. We further identify mild conditions under which this restricted problem provides a bounded approximation for the original problem.
翻译:这项工作研究 Stackelberg 网络阻截游戏 -- -- 这是一个重要的游戏类别, 维权者首先将( 随机化的) 防御资源分配给图表上的一组关键节点, 而对手则相应选择攻击这些节点的道路。 我们认为, 对手的应对模式是以经典的基于逻辑的离散选择模式的动态形式为基础的, 这是一种有条不紊的理性对手的应对对手的应对模式。 我们显示, 在理性环境中为维权者找到最佳阻截战略的问题也是很硬的。 由此产生的优化事实上是非冷却和额外的, 涉及复杂的术语, 并且超乎指数性多条路。 我们通过提出带有约束性解决方案保证的新的高效近似算法来应对这些计算挑战。 首先, 我们通过提出一个基于多时动态的动态编程公式来应对指数式的应对挑战。 我们然后表明, 非convex 目标的梯度梯度也可以在多时段内计算, 从而使我们能够使用一种基于梯度的方法来有效解决问题。 其次, 我们找出一个受限制的有限条件, 。