The ability to generalize from observed to new related environments is central to any form of reliable machine learning, yet most methods fail when moving beyond i.i.d data. This work argues that in some cases the reason lies in a misapreciation of the causal structure in data; and in particular due to the influence of unobserved confounders which void many of the invariances and principles of minimum error between environments presently used for the problem of domain generalization. This observation leads us to study generalization in the context of a broader class of interventions in an underlying causal model (including changes in observed, unobserved and target variable distributions) and to connect this causal intuition with an explicit distributionally robust optimization problem. From this analysis derives a new proposal for model learning with explicit generalization guarantees that is based on the partial equality of error derivatives with respect to model parameters. We demonstrate the empirical performance of our approach on healthcare data from different modalities, including image, speech and tabular data.


翻译:从观察到的环境向新的相关环境的普及能力是任何形式的可靠机器学习的核心,但大多数方法在超越i.d数据时都失败了。这项工作认为,在有些情况下,原因在于数据因果结构的错误反映;特别是由于未观察到的混淆者的影响,使目前用于领域概括化问题的环境之间许多最小误差的偏差和原则消失。这一观察导致我们在基础因果模型(包括观测到的、未观测到的和目标变量分布的变化)中研究较广泛的干预类别(包括观察到的、未观测到的和目标的可变分布)中的概括性,并将这种因果直觉与明确的分布稳健的优化问题联系起来。从这一分析中产生了一项新的示范学习建议,其明确的一般性保证是以错误衍生物与模型参数的局部平等为基础。我们从不同模式,包括图像、语音和表格数据,展示了我们在保健数据方面的做法的经验性表现。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员