Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that extends the functionality of OCT by extracting moving red blood cell signals from surrounding static biological tissues. OCTA has emerged as a valuable tool for analyzing skin microvasculature, enabling more accurate diagnosis and treatment monitoring. Most existing OCTA extraction algorithms, such as speckle variance (SV)- and eigen-decomposition (ED)-OCTA, implement a larger number of repeated (NR) OCT scans at the same position to produce high-quality angiography images. However, a higher NR requires a longer data acquisition time, leading to more unpredictable motion artifacts. In this study, we propose a vasculature extraction pipeline that uses only one-repeated OCT scan to generate OCTA images. The pipeline is based on the proposed Vasculature Extraction Transformer (VET), which leverages convolutional projection to better learn the spatial relationships between image patches. In comparison to OCTA images obtained via the SV-OCTA (PSNR: 17.809) and ED-OCTA (PSNR: 18.049) using four-repeated OCT scans, OCTA images extracted by VET exhibit moderate quality (PSNR: 17.515) and higher image contrast while reducing the required data acquisition time from ~8 s to ~2 s. Based on visual observations, the proposed VET outperforms SV and ED algorithms when using neck and face OCTA data in areas that are challenging to scan. This study represents that the VET has the capacity to extract vascularture images from a fast one-repeated OCT scan, facilitating accurate diagnosis for patients.
翻译:光学相干断层扫描血管成像(OCTA)是一种无创成像模式,通过从周围的静态生物组织中提取移动红细胞信号来扩展OCT的功能。 OCTA已成为分析皮肤微循环的有价值的工具,能够实现更准确的诊断和治疗监测。大多数现有的OCTA提取算法,例如斑点变异(SV)和特征分解(ED)OCTA,实现了更多的重复(NR)OCT扫描以产生高质量的血管成像。然而,较高的NR需要更长的数据采集时间,导致更多的不可预测的运动伪影。在本研究中,我们提出一种血管提取管道,使用仅一个重复的OCT扫描来生成OCTA图像。该管道基于提出的血管提取变压器(VET),利用卷积投影来更好地学习图像块之间的空间关系。与使用四次重复的OCT扫描的SV-OCTA(PSNR:17.809)和ED-OCTA(PSNR:18.049)获得的OCTA图像相比,由VET提取的OCTA图像显示出中等质量(PSNR:17.515)和更高的图像对比度,同时将所需的数据采集时间从〜8秒缩短到〜2秒。根据视觉观察,所提出的VET在使用颈部和面部OCTA数据的具有挑战性的区域时优于SV和ED算法。该研究表明,VET具有从快速的单个重复的OCT扫描中提取血管图像的能力,有助于患者的准确诊断。