Distilling analytical models from data has the potential to advance our understanding and prediction of nonlinear dynamics. Although discovery of governing equations based on observed system states (e.g., trajectory time series) has revealed success in a wide range of nonlinear dynamics, uncovering the closed-form equations directly from raw videos still remains an open challenge. To this end, we introduce a novel end-to-end unsupervised deep learning framework to uncover the mathematical structure of equations that governs the dynamics of moving objects in videos. Such an architecture consists of (1) an encoder-decoder network that learns low-dimensional spatial/pixel coordinates of the moving object, (2) a learnable Spatial-Physical Transformation component that creates mapping between the extracted spatial/pixel coordinates and the latent physical states of dynamics, and (3) a numerical integrator-based sparse regression module that uncovers the parsimonious closed-form governing equations of learned physical states and, meanwhile, serves as a constraint to the autoencoder. The efficacy of the proposed method is demonstrated by uncovering the governing equations of a variety of nonlinear dynamical systems depicted by moving objects in videos. The resulting computational framework enables discovery of parsimonious interpretable model in a flexible and accessible sensing environment where only videos are available.


翻译:从数据中蒸馏的分析模型有可能促进我们对非线性动态的了解和预测。虽然根据观察到的系统状态(例如,轨迹时间序列)发现治理方程式,显示在广泛的非线性动态中取得了成功,但从原始视频直接发现封闭式方程式仍是一个开放的挑战。为此,我们引入了一个创新的端到端的深层学习框架,以发现制约视频中移动对象动态的方程式的数学结构。这种结构包括:(1)一个以观察的系统状态(例如,轨迹时间序列)为基础,发现治理方程式网络,学习移动对象的低度空间/像素坐标;(2)一个可学习的空间-物理转变部分,在提取的空间/像素坐标和动态的潜在物理状态之间绘制地图;(3)一个基于数字的细微缩的回归模块,揭示了管理已学物理状态中移动物体动态动态的偏移式封闭式方程式,同时作为自动编码的制约。通过在可移动式图像模型中发现可移动的可移动式图像框架来展示拟议方法的功效。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月5日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员