Plasmon-induced transparency (PIT) displays complex nonlinear dynamics that find critical phenomena in areas such as nonlinear waves. However, such a nonlinear solution depends sensitively on the selection of parameters and different potentials in the Schr\"odinger equation. Despite this complexity, the machine learning community has developed remarkable efficiencies in predicting complicated datasets by regression. Here, we consider a recurrent neural network (RNN) approach to predict the complex propagation of nonlinear solitons in plasmon-induced transparency metamaterial systems with applied potentials bypassing the need for analytical and numerical approaches of a guiding model. We demonstrate the success of this scheme on the prediction of the propagation of the nonlinear solitons solely from a given initial condition and potential. We prove the prominent agreement of results in simulation and prediction by long short-term memory (LSTM) artificial neural networks. The framework presented in this work opens up a new perspective for the application of RNN in quantum systems and nonlinear waves using Schr\"odinger-type equations, for example, the nonlinear dynamics in cold-atom systems and nonlinear fiber optics.
翻译:Plasmon 诱发的透明度( PIT) 显示复杂的非线性动态, 在非线性波浪等领域发现关键现象。 然而, 这种非线性解决方案敏感地取决于Schr\'ddinger等方程式中参数的选择和不同潜力。 尽管如此复杂, 机器学习界在通过回归预测复杂数据集方面已经取得了显著的效率。 这里, 我们考虑一种经常性神经网络( RNN) 方法, 以预测非线性索尔子在颗粒导致的透明度非线性材料系统中的复杂传播, 其应用潜力绕过对一个指导模型的分析和数字方法。 我们展示了这个方案在预测非线性索利通子的传播方面的成功, 仅根据给定的初始条件和潜力进行。 我们证明长期短期内存( LSTM) 人造神经网络的模拟和预测结果的显著一致。 这项工作中所提出的框架为在量子系统和非线性波中应用 RNNN 开辟了新的视角, 例如, 使用Schr\'nal 样方程式的非线性方程式等。