Plasmon-induced transparency (PIT) displays complex nonlinear dynamics that find critical phenomena in areas such as nonlinear waves. However, such a nonlinear solution depends sensitively on the selection of parameters and different potentials in the Schr\"odinger equation. Despite this complexity, the machine learning community has developed remarkable efficiencies in predicting complicated datasets by regression. Here, we consider a recurrent neural network (RNN) approach to predict the complex propagation of nonlinear solitons in plasmon-induced transparency metamaterial systems with applied potentials bypassing the need for analytical and numerical approaches of a guiding model. We demonstrate the success of this scheme on the prediction of the propagation of the nonlinear solitons solely from a given initial condition and potential. We prove the prominent agreement of results in simulation and prediction by long short-term memory (LSTM) artificial neural networks. The framework presented in this work opens up a new perspective for the application of RNN in quantum systems and nonlinear waves using Schr\"odinger-type equations, for example, the nonlinear dynamics in cold-atom systems and nonlinear fiber optics.


翻译:Plasmon 诱发的透明度( PIT) 显示复杂的非线性动态, 在非线性波浪等领域发现关键现象。 然而, 这种非线性解决方案敏感地取决于Schr\'ddinger等方程式中参数的选择和不同潜力。 尽管如此复杂, 机器学习界在通过回归预测复杂数据集方面已经取得了显著的效率。 这里, 我们考虑一种经常性神经网络( RNN) 方法, 以预测非线性索尔子在颗粒导致的透明度非线性材料系统中的复杂传播, 其应用潜力绕过对一个指导模型的分析和数字方法。 我们展示了这个方案在预测非线性索利通子的传播方面的成功, 仅根据给定的初始条件和潜力进行。 我们证明长期短期内存( LSTM) 人造神经网络的模拟和预测结果的显著一致。 这项工作中所提出的框架为在量子系统和非线性波中应用 RNNN 开辟了新的视角, 例如, 使用Schr\'nal 样方程式的非线性方程式等。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
64+阅读 · 2021年6月18日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
12+阅读 · 2018年6月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员