Costly, noisy, and over-specialized, labels are to be set aside in favor of unsupervised learning if we hope to learn cheap, reliable, and transferable models. To that end, spectral embedding, self-supervised learning, or generative modeling have offered competitive solutions. Those methods however come with numerous challenges \textit{e.g.} estimating geodesic distances, specifying projector architectures and anti-collapse losses, or specifying decoder architectures and reconstruction losses. In contrast, we introduce a simple explainable alternative -- coined \textbf{DIET} -- to learn representations from unlabeled data, free of those challenges. \textbf{DIET} is blatantly simple: take one's favorite classification setup and use the \textbf{D}atum \textbf{I}nd\textbf{E}x as its \textbf{T}arget class, \textit{i.e. each sample is its own class}, no further changes needed. \textbf{DIET} works without a decoder/projector network, is not based on positive pairs nor reconstruction, introduces no hyper-parameters, and works out-of-the-box across datasets and architectures. Despite \textbf{DIET}'s simplicity, the learned representations are of high-quality and often on-par with the state-of-the-art \textit{e.g.} using a linear classifier on top of DIET's learned representation reaches $71.4\%$ on CIFAR100 with a Resnet101, $52.5\%$ on TinyImagenet with a Resnext50.


翻译:成本、 噪音和超专业性, 标签将被搁置, 以有利于不受监督的学习。 如果我们希望学习廉价、 可靠和可转移的模式。 为此, 光谱嵌入、 自我监督的学习或基因化模型提供了竞争性的解决方案 。 然而, 这些方法带来很多挑战 : extit{ e. g.} 估计大地距离, 指定投影建筑和反折叠损失, 或者指定解码结构和重建损失 。 相反, 我们引入一个简单的可解释的替代方案 { commond\ textf{ DIETET} -- 来学习未标注的数据 。\ textbeplod 嵌入、 自定义和自定义的 Rextal- diversal_ reports a textffrlation_ dismessional_ discoal_ discoildal_ discorrupal_ discoal_ discoal_ dismologs a.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2022年7月29日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员