In order to meet mobile cellular users' ever-increasing data demands, today's 4G and 5G networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This paper takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum technology. Armed with these data, we analyze and project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over CMOS hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts that with quantum annealing hardware operating at a 102 $\mu$s problem latency and 3.1M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS computation while reducing power consumption by 41 kW (45% lower) in a representative 5G base station scenario with 400 MHz bandwidth and 64 antennas, and an 8 kW power reduction (16% lower) using 1.5M qubits in a 200 MHz-bandwidth 5G scenario.
翻译:为了满足移动移动电话用户不断增加的数据需求,今天的4G和5G网络的设计主要是为了最大限度地提高光谱效率。虽然它们在这方面取得了进展,但控制这些网络的碳足迹和运行成本仍然是网络设计者长期存在的一个问题。本文件对这一问题持长远观点,设想了“下一个G”设想方案,即网络利用量子喷射来进行蜂基带处理。我们收集并综合了对电力消耗、计算吞吐量和延缓度、光谱效率、操作成本和关于量子技术的可行性时间表的见解。根据这些数据,我们分析和预测定量性能指标今后必须达到数量性性性能目标,以便提供CMOS硬件的计算和功率优势,同时使其整个网络光谱效率相匹配。我们的数量分析预测,如果量性能喷射硬件以102元的悬浮度和310兆瓦的悬浮度和310兆瓦的夸比值,那么量将实现与CMOS计算相同的光效率,同时将电力消耗量减少41千瓦(45%)和每千兆瓦的定量目标量,在具有代表性的5千兆瓦的5兆瓦的图像中将降低1千兆赫。