In applications of group testing in networks, e.g. identifying individuals who are infected by a disease spread over a network, exploiting correlation among network nodes provides fundamental opportunities in reducing the number of tests needed. We model and analyze group testing on $n$ correlated nodes whose interactions are specified by a graph $G$. We model correlation through an edge-faulty random graph formed from $G$ in which each edge is dropped with probability $1-r$, and all nodes in the same component have the same state. We consider three classes of graphs: cycles and trees, $d$-regular graphs and stochastic block models or SBM, and obtain lower and upper bounds on the number of tests needed to identify the defective nodes. Our results are expressed in terms of the number of tests needed when the nodes are independent and they are in terms of $n$, $r$, and the target error. In particular, we quantify the fundamental improvements that exploiting correlation offers by the ratio between the total number of nodes $n$ and the equivalent number of independent nodes in a classic group testing algorithm. The lower bounds are derived by illustrating a strong dependence of the number of tests needed on the expected number of components. In this regard, we establish a new approximation for the distribution of component sizes in "$d$-regular trees" which may be of independent interest and leads to a lower bound on the expected number of components in $d$-regular graphs. The upper bounds are found by forming dense subgraphs in which nodes are more likely to be in the same state. When $G$ is a cycle or tree, we show an improvement by a factor of $log(1/r)$. For grid, a graph with almost $2n$ edges, the improvement is by a factor of ${(1-r) \log(1/r)}$, indicating drastic improvement compared to trees. When $G$ has a larger number of edges, as in SBM, the improvement can scale in $n$.


翻译:在网络应用的团体测试中,例如,确定在网络上传播疾病的人,利用网络节点之间的关联性为减少所需测试数量提供了基本机会。我们用美元相关节点进行分组测试和分析,这些节点的相互作用由GG美元指定。我们通过一个边缘偏差随机图来模拟相关关系,每个边缘以1美元/美元概率下降,而同一部分的所有节点都具有相同状态。我们考虑三个图表类别:周期和树、美元经常图表和透析区块模型或SBM,为减少所需的测试次数提供了基本机会。我们用美元相关点的偏差随机随机图来模拟。我们用美元计算每节点的概率下降1美元,而在同一部分的所有节点中,当节点总数改善时,美元经常点和节点组合模型或SBMMM模型的相同数目,在识别缺陷节点上获得的更低和上下限限制次数。我们的结果是,在直位节点的周期中,直径值值值的直径值将显示一个直径值,一个直径直值的根值值值值值值值值值值,在直值的分数中,在直值分析中,直值中,直值的值值值值值值值的值值值值值值值值值值值值值值值值的值值值值值值值值值值值值值值中将显示一个直值值值值值值值值值值值值值的值的值的值的值的值的值的值值值值值值值值值值值值值值值值值值值值值的值值值值值值值值值值值值值值值值值值值值的值的值的比值上,在值上值上值上值值值值值值值值值值值值上,在比值上的值上,在比值上,在比值上,在比值上,在比值值值值上,在比值上,在比值上,在比值上。。。。。。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
19+阅读 · 2021年2月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
19+阅读 · 2021年2月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员