It is said that we live in the age of data, and that data is ubiquitous and readily available if one has the tools to harness it. That may well be true, but so is the opposite. It is ever more common to try to start a data science project only to find oneself without quality data. Be it due to just not having collected the needed features, or due to insufficient data, or even legality issues, the list goes on. When this happens, either the project is prematurely abandoned, or similar datasets are searched for and used. However, finding a dataset that answers your needs in terms of features, type of ratings, etc., may not be an easy task, this is particularly the case for recommender systems. In this work, a methodology for the generation of synthetic datasets for recommender systems is presented, thus allowing to overcome the obstacle of not having quality data in sufficient amount readily available. With this methodology, one can generate a synthetic dataset for recommendation composed by numerical/ordinal and nominal features. The dataset is built with Gaussian copulas, Dirichlet and Gaussian distributions, a Multinomial Logit model and a Fuzzy Logic Inference System that generates the ratings according to different user behavioural profiles and perceived item quality.
翻译:据说,我们生活在数据时代,如果有工具加以利用,数据就无处不在,很容易获得。这可能是事实,但情况正好相反。试图启动数据科学项目往往是为了找到自己而没有高质量数据。无论是因为没有收集所需的特征,还是由于数据不足,甚至合法性问题,清单仍在继续。如果发生这种情况,项目要么过早地被放弃,或者类似的数据集被搜索和使用。然而,如果找到一个数据集,在特征、评级类型等方面满足你的需求,可能不是一件容易的任务,这对推荐者系统来说尤其如此。在这项工作中,提出了为推荐者系统创建合成数据集的方法,从而克服了质量数据数量不足的障碍。有了这种方法,就可以产生一套合成数据集,用于根据数字/规律和名义特征提出建议。而数据集的构建方式可能不是一件容易的任务,特别是针对推荐者系统。在这项工作中,提出了一种为推荐者系统生成合成数据集的方法,从而可以克服无法随时获得足够数量的高质量数据的障碍。有了这样一个方法,人们可以生成一个合成数据集,用数字/规律和名义特征构成的建议。数据集成一个高斯的焦拉、迪里特和戈西亚等质量分布系统,一个不同的图像和行为质量分析系统,可以生成一个不同的系统。