Given a locally finite set $A \subseteq \mathbb{R}^d$ and a coloring $\chi \colon A \to \{0,1,\ldots,s\}$, we introduce the chromatic Delaunay mosaic of $\chi$, which is a Delaunay mosaic in $\mathbb{R}^{s+d}$ that represents how points of different colors mingle. Our main results are bounds on the size of the chromatic Delaunay mosaic, in which we assume that $d$ and $s$ are constants. For example, if $A$ is finite with $n = \#{A}$, and the coloring is random, then the chromatic Delaunay mosaic has $O(n^{\lceil{d/2}\rceil})$ cells in expectation. In contrast, for Delone sets and Poisson point processes in $\mathbb{R}^d$, the expected number of cells within a closed ball is only a constant times the number of points in this ball. Furthermore, in $\mathbb{R}^2$ all colorings of a dense set of $n$ points have chromatic Delaunay mosaics of size $O(n)$. This encourages the use of chromatic Delaunay mosaics in applications.


翻译:根据本地限定值 $A\ subseteq\ mathb{R ⁇ {R ⁇ d$ 和彩色 $chi $\ colon A\ colon A\ to 0. 0,1\ ldots,s $,我们引入$\ chi$的彩色Delaunay masaic, 这是$\ mathb{R ⁇ s+d} $ 表示不同颜色点如何混合的彩色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调

0
下载
关闭预览

相关内容

《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月8日
Arxiv
0+阅读 · 2023年2月6日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
0+阅读 · 2023年2月2日
VIP会员
相关VIP内容
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员