Given a locally finite set $A \subseteq \mathbb{R}^d$ and a coloring $\chi \colon A \to \{0,1,\ldots,s\}$, we introduce the chromatic Delaunay mosaic of $\chi$, which is a Delaunay mosaic in $\mathbb{R}^{s+d}$ that represents how points of different colors mingle. Our main results are bounds on the size of the chromatic Delaunay mosaic, in which we assume that $d$ and $s$ are constants. For example, if $A$ is finite with $n = \#{A}$, and the coloring is random, then the chromatic Delaunay mosaic has $O(n^{\lceil{d/2}\rceil})$ cells in expectation. In contrast, for Delone sets and Poisson point processes in $\mathbb{R}^d$, the expected number of cells within a closed ball is only a constant times the number of points in this ball. Furthermore, in $\mathbb{R}^2$ all colorings of a dense set of $n$ points have chromatic Delaunay mosaics of size $O(n)$. This encourages the use of chromatic Delaunay mosaics in applications.
翻译:根据本地限定值 $A\ subseteq\ mathb{R ⁇ {R ⁇ d$ 和彩色 $chi $\ colon A\ colon A\ to 0. 0,1\ ldots,s $,我们引入$\ chi$的彩色Delaunay masaic, 这是$\ mathb{R ⁇ s+d} $ 表示不同颜色点如何混合的彩色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调色调