Strongly interacting electrons in solids are generically described by Hubbardtype models, and the impact of solar light can be modeled by an additional time-dependence. This yields a finite dimensional system of ordinary differential equations (ODE)s of Schr\"odinger type, which can be solved numerically by exponential time integrators of Magnus type. The efficiency may be enhanced by combining these with operator splittings. We will discuss several different approaches of employing exponential-based methods in conjunction with an adaptive Lanczos method for the evaluation of matrix exponentials and compare their accuracy and efficiency. For each integrator, we use defect-based local error estimators to enable adaptive time-stepping. This serves to reliably control the approximation error and reduce the computational effort
翻译:固态中密切互动电子通常由 HUBBard型模型描述,太阳光的影响可以通过额外的时间依赖来模拟。这产生一个Schr\'odinger型普通差分方程(ODE)的有限维维系统,可以通过Magnus 型的指数时间集成器以数字方式解答。如果将这些数据与操作员分离结合起来,效率可以提高。我们将讨论采用指数基方法的几种不同方法,结合适应性Lanczos方法来评估矩阵指数并比较其精确度和效率。对于每一个集成器,我们使用基于缺陷的本地误差估计器来进行适应时间步调用。这有助于可靠地控制近似误并减少计算努力。