This paper addresses the energy management of a grid-connected renewable generation plant coupled with a battery energy storage device in the capacity firming market, designed to promote renewable power generation facilities in small non-interconnected grids. A recently developed deep learning model known as normalizing flows is used to generate quantile forecasts of renewable generation. They provide a general mechanism for defining expressive probability distributions, only requiring the specification of a base distribution and a series of bijective transformations. Then, a probabilistic forecast-driven strategy is designed, modeled as a min-max-min robust optimization problem with recourse, and solved using a Benders decomposition. The convergence is improved by building an initial set of cuts derived from domain knowledge. Robust optimization models the generation randomness using an uncertainty set that includes the worst-case generation scenario and protects this scenario under the minimal increment of costs. This approach improves the results over a deterministic approach with nominal point forecasts by finding a trade-off between conservative and risk-seeking policies. Finally, a dynamic risk-averse parameters selection strategy based on the quantile forecasts distribution provides an additional gain. The case study uses the photovoltaic generation monitored on-site at the University of Li\`ege (ULi\`ege), Belgium.
翻译:本文论述电网连接的可再生能源发电厂的能源管理以及能力固存市场电池能源储存装置,目的是在小型非互连电网网中促进可再生能源发电设施。最近开发的深层次学习模式,称为正常流动,用于对可再生能源进行四分位预测,为确定明确概率分布提供了一个一般机制,仅要求规定基础分布和一系列双向转换。然后,设计了一种概率预测驱动战略,以利用微量减速最小优化问题为模型,并使用本德尔斯分解法加以解决。通过根据域域知识建立一套初步削减办法改进了趋同。机械优化模型,利用包括最坏的一代情景的不确定性集来随机生成,并在最低成本递增的情况下保护这一假设。这种方法通过寻找保守政策与寻求风险政策之间的贸易取舍,通过名义点预测,改进了结果。最后,根据微调预测分布,以动态风险偏向参数选择战略为基础,从域知识中得出了额外收益。Robust优化模型,使用包含最坏的一代情景情景假设,并在最低成本递增的情况下保护这一情景。这一方法通过在名义点预测中改进了结果。在比利时大学的光学研究所的一代上进行了案例研究。