The French National Institute of Geographical and Forest Information (IGN) has the mission to document and measure land-cover on French territory and provides referential geographical datasets, including high-resolution aerial images and topographic maps. The monitoring of land-cover plays a crucial role in land management and planning initiatives, which can have significant socio-economic and environmental impact. Together with remote sensing technologies, artificial intelligence (IA) promises to become a powerful tool in determining land-cover and its evolution. IGN is currently exploring the potential of IA in the production of high-resolution land cover maps. Notably, deep learning methods are employed to obtain a semantic segmentation of aerial images. However, territories as large as France imply heterogeneous contexts: variations in landscapes and image acquisition make it challenging to provide uniform, reliable and accurate results across all of France. The FLAIR-one dataset presented is part of the dataset currently used at IGN to establish the French national reference land cover map "Occupation du sol \`a grande \'echelle" (OCS- GE).
翻译:法国地理和森林信息国家研究所(IGN)的任务是记录和测量法国领土上的土地覆盖,并提供参考地理数据集,包括高分辨率航空影像和地形地图。土地覆盖的监测在土地管理和规划倡议中发挥着至关重要的作用,可以产生重大的社会经济和环境影响。人工智能(AI)与遥感技术一起,承若成为确定土地覆盖及其演变的强大工具。 IGN目前正在探索使用IA在制作高分辨率土地覆盖地图方面的潜力。值得注意的是,使用深度学习方法可以获得航空影像的语义分割。然而,像法国这样大的领土意味着具有异质性的背景:不同的地形和影像采集使得在所有法国地区提供统一,可靠和准确的结果变得具有挑战性。 FLAIR-one数据集是IGN目前用于建立法国全国参考土地覆盖地图" Occupation du sol à grande échelle"(OCS-GE)的数据集的一部分。