Visual analytics (VA) requires analysts to iteratively propose analysis tasks based on observations and execute tasks by creating visualizations and interactive exploration to gain insights. This process demands skills in programming, data processing, and visualization tools, highlighting the need for a more intelligent, streamlined VA approach. Large language models (LLMs) have recently been developed as agents to handle various tasks with dynamic planning and tool-using capabilities, offering the potential to enhance the efficiency and versatility of VA. We propose LightVA, a lightweight VA framework that supports task decomposition, data analysis, and interactive exploration through human-agent collaboration. Our method is designed to help users progressively translate high-level analytical goals into low-level tasks, producing visualizations and deriving insights. Specifically, we introduce an LLM agent-based task planning and execution strategy, employing a recursive process involving a planner, executor, and controller. The planner is responsible for recommending and decomposing tasks, the executor handles task execution, including data analysis, visualization generation and multi-view composition, and the controller coordinates the interaction between the planner and executor. Building on the framework, we develop a system with a hybrid user interface that includes a task flow diagram for monitoring and managing the task planning process, a visualization panel for interactive data exploration, and a chat view for guiding the model through natural language instructions. We examine the effectiveness of our method through a usage scenario and an expert study.
翻译:暂无翻译