Object-centric representations form the basis of human perception and enable us to reason about the world and to systematically generalize to new settings. Currently, most machine learning work on unsupervised object discovery focuses on slot-based approaches, which explicitly separate the latent representations of individual objects. While the result is easily interpretable, it usually requires the design of involved architectures. In contrast to this, we propose a distributed approach to object-centric representations: the Complex AutoEncoder. Following a coding scheme theorized to underlie object representations in biological neurons, its complex-valued activations represent two messages: their magnitudes express the presence of a feature, while the relative phase differences between neurons express which features should be bound together to create joint object representations. We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets. Additionally, we show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
翻译:以物体为中心的表达方式构成了人类感知的基础, 并使我们能够了解世界, 并系统化地概括到新的设置。 目前, 大多数关于不受监督的物体发现机器学习工作都集中在基于时间档的方法上, 这种方法明确区分了单个物体的潜在表现。 虽然结果很容易解释, 但通常需要设计相关的结构。 与此相反, 我们建议对以物体为中心的表达方式采取分布式方法: 复杂自动编码器。 在对生物神经体中物体表示表示的物体表示结构进行编码后, 其复杂价值的激活代表了两种信息: 它们的数量表示一个特性的存在, 而神经体之间的相对阶段差异表示哪些特性应该捆绑在一起以创建共同的物体表示。 我们表明, 这种简单而有效的方法比简单多对象数据集上一个等效的、 实际价值的自动编码器的重建性效果要好。 此外, 我们显示, 在两个数据集中, 它能取得竞争性的、 不超强的物体发现性物体发现性能, 也就是两个SlotAnyaction 模型, 并且能够将第三个数据设置中的物体分解, 即为7-70 快速的训练。