This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking. The rotation and translation of the UAV are jointly optimized, which allows PANTHER to fully exploit the differential flatness of multirotors. Real-time performance is achieved by implicitly imposing this constraint through the Hopf fibration. PANTHER is able to keep the obstacles inside the FOV 7.4 and 1.5 times more than non-PA approaches and PA approaches that decouple translation and yaw, respectively. The projected velocity (and hence the blur) is reduced by 30%. Our recently-derived MINVO basis is used to impose low-conservative collision avoidance constraints in position and velocity space. Finally, extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.


翻译:本文展示了PANATH(PANTH)在动态环境中的实时感知觉(PA)轨迹规划器。PANTHE 计划轨迹,避免动态障碍,同时将其保留在传感器视野(FOV)中,并尽可能缩小模糊度,以协助物体跟踪。UAV的旋转和翻译是联合优化的,使PANTHER能够充分利用多色体的差幅平面。实时性能是通过Hopf裂变间接地施加这种限制来实现的。PANTHE能够将障碍保留在FOV 7.4和1.5倍于非PA方法中,以及PA方法中避免动态障碍,同时将其保留在感官视野(FOV7.4)中,同时将其保留在感官视野(FOVA)中,同时将其保留在感官视野7.4和(PAPA)中,避免动态障碍的频率分别为5.8倍和1.5倍以上。预测速度(因此模糊度)将速度降低30%。我们最近获得的MINVO基础用来在位置和速度空间中施加低度的低防碰撞阻力阻力阻力阻力阻力阻力。最后,在机上的所有传感器中,只有6.3 mMU/光层和摄感应器。使用过的传感器。仅向下。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员