The study focuses on complex networks that are underlying graphs with an embedded dynamical system. We aim to reduce the number of edges in the network while minimizing its impact on network dynamics. We present an algorithmic framework that produces sparse graphs meaning graphs with fewer edges on reaction-diffusion complex systems on undirected graphs. We formulate the sparsification problem as a data assimilation problem on a Reduced order model space(ROM) space along with constraints targeted towards preserving the eigenmodes of the Laplacian matrix under perturbations(L = D - A, where D is the diagonal matrix of degrees and A is the adjacency matrix of the graph). We propose approximations for finding the eigenvalues and eigenvectors of the Laplacian matrix subject to perturbations. We demonstrate the effectiveness of our approach on several real-world graphs.
翻译:本研究关注底层图嵌入动力学系统的复杂网络。我们的目标是在最小化对网络动力学影响的基础上减少网络的边数。我们提出了一种算法框架,用于在未定向图上的反应扩散复杂系统上产生稀疏图(即较少的边)。我们将稀疏化问题格式化为在降阶模型空间(ROM)上的数据同化问题,并针对在扰动下保留拉普拉斯矩阵特征模式的约束提出了解决方案(L = D-A,其中D是度的对角线矩阵,A是图的邻接矩阵)。我们提出了逼近寻找拉普拉斯矩阵特征值和特征向量的方法,以应对扰动。我们在几个真实世界图表上展示了方法的有效性。